Synthesis and structures of half-sandwich $\mathbf{W}(\mathrm{vi})$ tri(selenido) and W (II) selenolato complexes

Hiroyuki Kawaguchi ${ }^{a}$ and Kazuyuki Tatsumi*b
${ }^{a}$ Coordination Chemistry Laboratories, Institute for Molecular Science, Myodaiji, Okazaki 444-8595, Japan
${ }^{b}$ Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
E-mail: i45100a@nucc.cc.nagoya-u.ac.jp

Received (in Cambridge, UK) 25th April 2000, Accepted 5th June 2000

The reaction of $\mathrm{Cp} * \mathrm{WCl}_{4}$ with $\mathrm{LiSeBu}^{\mathrm{t}}$ in THF in the presence of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$ gave rise to $\mathrm{Cp}{ }^{*} \mathrm{~W}\left(\mathrm{SeBu}^{\mathrm{t}}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{3} 3$, while treatment of the $\mathrm{Cp} * \mathrm{WCl}_{4} / \mathrm{LiSeBu}^{\mathrm{t}}$ reaction mixture with $\mathrm{Li}_{2} \mathrm{Se}_{2}$ followed by cation exchange with $\mathrm{PPh}_{4} \mathrm{Br}$ in MeCN afforded $\left(\mathrm{PPh}_{4}\right)\left[\mathrm{Cp} * \mathrm{WSe}_{3}\right] 1$.

The chemistry of terminal selenido complexes is much less developed than that of the familiar metal oxides and sulfides. ${ }^{1}$ This is mainly because many of the traditional reagents used in metal oxo and sulfido chemistry are not simply transferable to their selenido congeners. ${ }^{2}$ In the course of our studies of group 6 transition metal chalcogenido chemistry, we previously isolated the half-sandwich tri(sulfido) complexes $\left[\mathrm{Cp} * \mathrm{MS}_{3}\right]^{-}$ $(\mathrm{M}=\mathrm{Mo}, \mathrm{W}) .^{3,4}$ Carbon-sulfur bond rupture of thiolato complexes gives ready access to thiolato/sulfido derivatives and eventually $\left[\mathrm{Cp}^{*} \mathrm{MS}_{3}\right]^{-}$. Here we report the synthesis of $\left(\mathrm{PPh}_{4}\right)\left[\mathrm{Cp}^{*} \mathrm{WSe}_{3}\right] \mathbf{1}$ via $\mathrm{C}-\mathrm{Se}$ bond cleavage.

For the selenolation reagent, the readily accessible $\mathrm{LiSeBu}{ }^{\mathrm{t}}$ was employed, which is prepared by the reaction of $\mathrm{LiBu}^{\mathrm{t}}$ with 1 equiv. of selenium in THF at $-78^{\circ} \mathrm{C}$. We have reported facile C-S bond cleavage of tert-butylthiolato complexes of group 5 and 6 metals, ${ }^{3}$ and $\mathrm{C}-\mathrm{Se}$ bond activation was expected to occur for the analogous selenolato complexes. Addition of 4 equiv. of LiSeBu' to $\mathrm{Cp} * \mathrm{WCl}_{4}$ in THF at $-78{ }^{\circ} \mathrm{C}$ gave a red solution. After stirring for 30 min , the solution turned brown, from which $\mathrm{Cp}_{2}{ }_{2} \mathrm{~W}_{2} \mathrm{Se}_{2}(\mu-\mathrm{Se})_{2} 2$ was obtained in 40% yield (Scheme 1). Spectral data show that $\mathbf{2}$ is a mixture of $s y n$ - and anti-isomers. In a separate experiment, a freshly prepared $\mathrm{Cp} * \mathrm{WCl}_{4} / \mathrm{LiSeBu}^{\mathrm{t}}$ mixture was quickly transferred into a THF solution of $\mathrm{Li}_{2} \mathrm{Se}_{2}$ to give a dark red suspension. Cation exchange with $\mathrm{PPh}_{4} \mathrm{Br}$ in MeCN provided the intriguing tri(selenido) complex 1 as dark red crystals in 23% yield concomitant with 2 (14\%). \dagger This synthetic route to $\mathbf{1}$ is reminiscent of the preparation of [$\left.\mathrm{Cp} * \mathrm{MoS}_{3}\right]^{-}$by the reaction of $\mathrm{Cp} * \mathrm{MoS}_{2}\left(\mathrm{SBut}^{\mathrm{t}}\right)$ with $\mathrm{Li}_{2} \mathrm{~S}_{2}$ and supports the generation of the hypothetical $\mathrm{Cp}^{*} \mathrm{WSe}_{2}\left(\mathrm{SeBu}^{\mathrm{t}}\right)$ intermediate in the $\mathrm{Cp}^{*} \mathrm{WCl}_{4} / \mathrm{LiSeBu}{ }^{t}$ reaction. ${ }^{3}$ While the

Scheme 1 Reagents and conditions: i, $\mathrm{Li}_{2} \mathrm{Se}_{2}$, THF; ii, $\mathrm{PPh}_{4} \mathrm{Br}, \mathrm{MeCN}$; iii, $30 \mathrm{~min},-78^{\circ} \mathrm{C}$, THF; iv, Bu'NC, THF.
reaction of $\mathrm{Cp}^{*} \mathrm{WCl}_{4}$ with $\mathrm{LiSBu}^{\mathrm{t}}$ afforded $\mathrm{Cp}^{*} \mathrm{~W}\left(\mathrm{SBu}^{\mathrm{t}}\right)_{3}$, $\mathrm{Cp}^{*} \mathrm{WS}_{2}\left(\mathrm{SBut}^{t}\right.$, and $\mathrm{Cp}^{*}{ }_{2} \mathrm{~W}_{2} \mathrm{~S}_{2}(\mu-\mathrm{S})_{2}$, all attempts to isolate the expected Se analogues, such as $\mathrm{Cp}^{*} \mathrm{~W}\left(\mathrm{SeBu}^{\mathrm{t}}\right)_{3}$ and $\mathrm{Cp}^{*} \mathrm{WSe}_{2}\left(\mathrm{SeBut}^{\mathrm{t}}\right)$, have failed.

Fig. 1 shows the three-legged piano-stool structure of the anion of $\mathbf{1} \ddagger$ The average W-Se distance of $2.322 \AA$ in $\mathbf{1}$ is similar to that of $\left(\mathrm{PPh}_{4}\right)_{2}\left[\mathrm{WSe}_{4}\right][2.314(1) \AA] .{ }^{5}$ The IR spectrum of 1 shows the $W=$ Se stretching frequency at $284 \mathrm{~cm}^{-1}$ comparable to that of $\left[\mathrm{WSe}_{4}\right]^{2-} .6$ The ${ }^{77} \mathrm{Se}$ NMR signal (δ 1437) lies in the range of chemical shifts for terminal selenido ligands. ${ }^{7}$ The UV-VIS spectra of 2 and its sulfur congener $\left(\mathrm{PPh}_{4}\right)\left[\mathrm{Cp} * \mathrm{WS}_{3}\right]$ are similar, showing a strong absorption at 437 and 377 nm , respectively, assignable to charge-transfer transitions from selenium and sulfur to the vacant d orbital of tungsten. The red shift on going from sulfide to selenide (0.45 eV) compares well with the difference in the first ionization potentials of S and $\mathrm{Se} .{ }^{8}$

In another experiment, we carried out the $\mathrm{Cp} * \mathrm{WCl}_{4} / \mathrm{LiSeBu}^{\mathrm{t}}$ reaction in the presence of $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$, from which $\mathrm{Cp} * \mathrm{~W}(\mathrm{Se}-$ $\left.\mathrm{Bu}^{\mathrm{t}}\right)\left(\mathrm{CNBut}^{\mathrm{t}}\right)_{3} 3$ was isolated as brown crystals in 41% yield (Scheme 1).§ The X-ray structure of $3 \ddagger$ shows the metal surrounded in a distorted trigonal-bipyramidal geometry wherein the Se and $\mathrm{C}(20)$ atoms occupy axial positions, if the Cp* ligand is viewed as a monodentate ligand (Fig. 1). While two of the three $\mathrm{But}^{\mathrm{N}} \mathrm{NC}$ ligands are nearly linear [$\mathrm{C}-\mathrm{N}-\mathrm{C}=$ $\left.175.8(8), 164.3(7)^{\circ}\right]$, the other contains essentially an sp^{2}-type N atom with a $\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$ angle of $128.7(6)^{\circ}$ amongst the smallest of known bent isocyanides (122-156). ${ }^{9}$ The presence of the bent isocyanide is ascribed to extensive π-back donation from the electron-rich W (II) metal ion to the isocyanide. The bent isocyanide also has a shorter $\mathrm{W}-\mathrm{C}$ bond [1.984(7) \AA] and a longer $\mathrm{C}_{\text {ipso }}-\mathrm{N}$ bond [1.220(9) \AA] relative to the corresponding values in two linear isocyanides (mean 2.032 and $1.151 \AA$). This structural feature is consistent with the two $\mathrm{N}-\mathrm{C}$ stretching frequencies at 2038 and $1813 \mathrm{~cm}^{-1}$ observed in the IR spectrum. The W-Se distance of $2.6271(7) \AA$ is comparable to that of $\mathrm{CpW}(\mathrm{CO})_{3}\left(\mathrm{SeCH}_{2} \mathrm{Ph}\right)[2.623(1) \AA] .{ }^{10} \mathrm{On}$ the other hand, the ${ }^{1} \mathrm{H}$ NMR spectrum of 3 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature shows three singlets assignable to tert-butyl groups in an intensity ratio of $2: 1: 1$, indicating that the complex is fluxional in solution. Previously, we reported the isolation of

Fig. 1 Molecular structure of the anion of 1. Selected bond lengths (\AA) and angles (${ }^{\circ}$): W-Se(1) 2.322(1), W-Se(2) 2.326(1), W-Se(3) 2.319(1); Se(1)-$\mathrm{W}-\mathrm{Se}(2) \quad 105.42(4), \quad \mathrm{Se}(1)-\mathrm{W}-\mathrm{Se}(3) \quad 103.87(4), \quad \mathrm{Se}(2)-\mathrm{W}-\mathrm{Se}(3)$ 104.25(4).

Fig. 2 Molecular structure of 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: W-Se 2.6271(7), W-C(15) 1.984(7), W-C(20) 2.039(7), W-C25 2.025(8), $\mathrm{Se}-\mathrm{C}(11) 2.019(8)$, $\mathrm{N}(1)-\mathrm{C}(15) 1.220(9)$, $\mathrm{N}(2)-\mathrm{C}(20) 1.148(9)$, $\mathrm{N}(3)-$ C(25) 1.153(9); Se-W-C(5) 82.9(2), Se-W-C(15) 73.3(2), Se-W-C(20) 140.7(2), Se-W-C(25) 88.9(2), C(15)-W-C(20) 73.6(3), C(15)-W-C(25) 103.9(3), C(20)-W-C(25) 79.1(3).
the $\mathrm{W}(\mathrm{Iv})$ thiolato complex $\mathrm{Cp} * \mathrm{~W}\left(\mathrm{SBu}^{\mathrm{t}}\right)_{3}\left(\mathrm{CNBu}^{\mathrm{t}}\right)$ from the $\mathrm{Cp}^{*} \mathrm{WCl}_{4} / \mathrm{LiStBu}^{\mathrm{t}}$ reaction in the presence of $\mathrm{Bu}^{\mathrm{N}} \mathrm{NC} .{ }^{4}$ The isolation of a W (II) selenolato complex, $\mathbf{3}$, is in accord with the tendency of selenolato complexes to favor lower oxidation states.

Notes and references

\dagger All manipulations were carried out under an atmosphere of argon using solvents purified by standard methods. A mixture of LiSeBut $(7.60 \mathrm{mmol})$ and $\mathrm{Cp} * \mathrm{WCl}_{4}(0.86 \mathrm{~g}, 1.87 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was quickly added to a slurry of $\mathrm{Li}_{2} \mathrm{Se}_{2}(1.40 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was warmed up to room temperature and stirred for 2 h . After centrifugation, the solution was evaporated to dryness. The residue was dissolved in MeCN (30 mL) to give a dark red solution and a brown solid. A solution of $\mathrm{PPh}_{4} \mathrm{Br}$ ($0.47 \mathrm{~g}, 1.12 \mathrm{mmol}$) in $\mathrm{MeCN}(20 \mathrm{~mL})$ was added to the dark red supernatant. Concentration and cooling to $-20^{\circ} \mathrm{C}$ afforded 0.38 g of $\mathbf{1}$ as dark red crystals in 23% yield. The brown solid which was insoluble in MeCN was recrystallized from toluene to provide 2 in 14% yield. Data for 1: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 2.20(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp} *), 7.6-8.0(\mathrm{~m}, 20 \mathrm{H}$, PPh_{4}). ${ }^{77} \mathrm{Se}$ NMR ($95.3 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{2} \mathrm{Se}$), $\delta 1437$. IR $\mathrm{v} / \mathrm{cm}^{-1}: 284 \mathrm{~m}$ (W=Se). UV-VIS (MeCN): $\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 299$ (19000), 350 (sh), 437 (38000), 530 (sh). Anal. calc.: C, 45.61, H, 3.94. Found: C, 45.57; H, 3.98%. Data for 2: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 2.27$ (s, Cp^{*}), 2.33 (s, Cp*). IR $v / \mathrm{cm}^{-1}: 315 \mathrm{~m}, 298 \mathrm{~m}(\mathrm{~W}=\mathrm{Se})$. FAB-MS: $954\left(\mathrm{M}^{+}\right)$. Anal. calc.: C, 25.18; H, 3.17. Found: C, 25.01 ; H, 3.30\%.
\ddagger Crystal data: for $\mathbf{1}: \mathrm{C}_{34} \mathrm{H}_{35} \mathrm{Se}_{3} \mathrm{PW}, M=895.35$, orthorhombic, space group Pbca, $a=18.284(5), b=20.171(7), c=17.758(5) \AA, V=6549(2)$ $\AA^{3}, Z=8, T=293 \mathrm{~K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=69.37 \mathrm{~cm}^{-1}$, Rigaku-AFC7R, 6360 measured reflections $\left(2 \theta_{\max }=50^{\circ}\right)$. The structure was solved by Patterson methods and refined by full-matrix least squares. At convergence, $R=$ $0.057, R_{\mathrm{w}}=0.058$, and GOF $=1.44$ for 352 variables refined against 4341 unique reflections $[I>1 \sigma(I)]$.
For 3: $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{SeW}, M=704.55$, monoclinic, space group $P 2{ }_{1} / n, a=$ 9.7349(8), $b=18.9776(5), c=17.4477$ (3) $\AA, \beta=97.1791(7)^{\circ}, V=$ 3198.1(2) $\AA^{3}, Z=4, T=173 \mathrm{~K}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=47.74 \mathrm{~cm}^{-1}$, Rigaku-AFC7 equipped with a MSC/ADSC Quantum1 CCD detector, 20472 measured reflections ($2 \theta_{\max }=55^{\circ}$). The structure was solved by Patterson methods and refined by full-matrix least squares (TEXSAN). At convergence, $R=$ $0.077, R_{\mathrm{w}}=0.063$, and GOF $=1.47$ for 307 variables refined against all 7147 unique reflections.
CCDC 182/1672. See http://www.rsc.org/suppdata/cc/b0/b003303k/ for crystallographic files in .cif format.
$\S \mathrm{Bu}^{\mathrm{N}} \mathrm{NC}(1.0 \mathrm{~mL}, 8.8 \mathrm{mmol})$ was added to a mixture of $\mathrm{Cp} * \mathrm{WCl}_{4}(0.46 \mathrm{~g}$, $1.06 \mathrm{mmol})$ and $\mathrm{LiSeBu}{ }^{\mathrm{t}}(4.24 \mathrm{mmol})$ in THF (30 mL) at $-78^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 0.5 h . The resulting brown solution was evaporated to dryness. The residue was crystallized from hexane to give $3(0.31 \mathrm{~g}, 41 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta 1.36\left(\mathrm{~s}, 18 \mathrm{H}^{2} \mathrm{Bu}^{\mathrm{t}}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 1.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 1.93(\mathrm{~s}, 15 \mathrm{H}$, Cp*); IR v/cm ${ }^{-1}$, 2038s, 1813s. Anal. calc.: C, 49.44; H, 7.30; N, 5.96. Found: C, 49.07; H, 7.31; N, 5.61\%.

1 T. M. Trnka and G. Parkin, Polyhedron, 1997, 16, 1031; G. Parkin, Prog. Inorg. Chem., 1998, 47, 1.
2 L. C. Roof and J. W. Kolis, Chem. Rev., 1993, 93, 1037; K. Tatsumi, H. Kawaguchi and K. Tani, Angew. Chem., Int. Ed. Engl., 1993, 32, 591.
3 H. Kawaguchi and K. Tatsumi, J. Am. Chem. Soc., 1995, 117, 3885; H. Kawaguchi, K. Yamada, J.-P. Lang and K. Tatsumi, J. Am. Chem. Soc., 1997, 119, 10346; K. Tatsumi, A. Tahara and A. Nakamura, J. Organomet. Chem., 1994, 471, 111.

4 T. Nagasawa, H. Kawaguchi and K. Tatsumi, J. Organomet. Chem., 1999, 592, 46.
5 S. C. O’Neal and J. W. Kolis, J. Am. Chem. Soc., 1988, 110, 1971.
6 A. Müller, E. Diemann, R. Jostes and H. Bögge, Angew. Chem., Int. Ed. Engl., 1981, 20, 934.
7 R. W. M. Wardle, S. Bhaduri, C.-N. Chau and J. A. Ibers, Inorg. Chem., 1988, 27, 1747; J. H. Shin and G. Parkin, Organometallics, 1995, 14, 1104.

8 C. E. Moore, Atomic Energy Levels, National Bureau of Standards, Washington DC, 1949.
9 D. Rabinovich and G. Parkin, Inorg. Chem., 1995, 34, 6341; E. M. Carnahan, R. L. Rardin, S. G. Bott and S. J. Lippard, Inorg. Chem., 1992, 31, 5193; W. D. Jones, G. P. Foster and J. M. Putinas, Inorg. Chem., 1987, 26, 2120; T. Adachi, N. Sasaki, T. Ueda, M. Kamikawa and T. Yoshida, J. Chem. Soc., Chem. Commun., 1989, 1320; J. Chatt, A. J. L. Pombeiro, R. L. Richards, G. H. D. Royston, K. W. Muir and R. Walker, J. Chem. Soc., Chem. Commun., 1975, 708.
10 W. Eikens, C. Kienitz, P. G. Jones and C. Thöne, J. Chem. Soc., Dalton Trans., 1994, 3329.

